Analisa Kemiripan Struktural Model Proses Bisnis Menggunakan Metode Jaccard
DOI:
https://doi.org/10.53682/edutik.v3i4.7560Keywords:
Model proses bisnis, kemiripan structural, Jaccard methodAbstract
Setiap organisasi membutuhkan proses bisnis untuk menunjang efisiensi dan ekfektifitas kerja organisasi. Analisa, perancangan kembali (reengineering), penyempurnaan (improvement, dan implementasi proses bisnis merupakan aktifitas yang dibutuhkan dalam organisasi. Permasalahan yang sering terjadi adalah adanya perbedaan antara bisnis proses yang ditetapkan dalam prosedur operasi standart organisasi dengan bisnis proses yang dijalankan. Hal ini akan berpengaruh pada efektifitas dan efisensi kinerja. Perhitungan kemiripan antara keduanya perlu dilakukan dengan menghitung kesamaan model proses bisnis menggunakan metode Jaccard. Penelitian ini bertujuan untuk menghitung kemiripan antara model bisnis proses dalam organisasi serta membandingkannya dengan hasil expert judgment. Dari hasil perhitungan ini dapat memberikan rekomendasi apakah dibutuhkan reengineering model proses bisnis atau improvement model proses bisnis dalam organisasi. Hasil penelitian ini menunjukkan bahwa metode Jaccard memiliki akurasi tinggi dalam menghitung nilai kemiripan proses bisnis secara struktural dengan deviasi 1,59%.
References
Awadid, A., Nurcan, S., & Ayachi, S. (2018). On leveraging the fruits of research efforts in the arena of business process modeling formalisms: a map-driven approach for decision making. Software and Systems Modeling, 17(66), 1–26. https://doi.org/10.1007/s10270-018-0689-y
Fauzan, A. C., Sarno, R., & Yaqin, M. A. (2017). Performance Measurement Based on Coloured Petri Net Simulation of Scalable Business Processes. 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), September, 19–21. https://doi.org/10.1109/EECSI.2017.8239121
Fauzan, A. C., Sarno, R., Yaqin, M. A., & Jamal, A. (2018). Extracting common fragment based on behavioral similarity using transition adjacency relations for scalable business processes. Proceedings of the 11th International Conference on Information and Communication Technology and System, ICTS 2017, 2018-Janua, 131–136. https://doi.org/10.1109/ICTS.2017.8265658
Klinkmuller, C., & Weber, I. (2017). How Process Model Matching Techniques Use Control Flow Information. Decision Support Systems, 6-14. https://doi.org/10.1016/j.dss.2017.06.002
Peinel, G., & Rose, T. (2013). Business Processes and Standard Operating Procedures : Two Coins with Similar Sides To cite this version : HAL Id : hal-01490909. 12th International Conference on Electronic Government (EGOV), 224–236.
Rahmawati, D., Aini, L. N., Sarno, R., Fatichah, C., & Sunaryono, D. (2017). Comparison of behavioral similarity use TARs and Naïve algorithm for calculating similarity in business process model. Proceeding - 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017, 2018-Janua(1), 115–120. https://doi.org/10.1109/ICSITech.2017.8257095
Raj, A., Agrawal, A., & Prabhakar, T. (2013). Transformation of Business Processes into UML Models: An SBVR Approach. International Journal of Scientific & Engineering Research, 4(7), 647–661.
Skersys, T., Tutkute, L., & Butleris, R. (2012). The enrichment of BPMN business process model with SBVR business vocabulary and rules. Journal of Computing and Information Technology, 20(3), 143–150. https://doi.org/10.2498/cit.1002090
Stephanie, C., & Sarno, R. (2018a). Detecting Business Process Anomaly Using Graph Similarity Based on Dice Coefficient, Vertex Ranking and Spearman Method. 2018 International Seminar on Application for Technology of Information and Communication (ISemantic) Detecting, 171–176.
Stephanie, C., & Sarno, R. (2018b). Detecting Business Process Anomaly Using Graph Similarity Based on Dice Coefficient, Vertex Ranking and Spearman Method. In Universitas Dian Nusantara (Ed.), International Seminar on Application for Technology of Information and Communication (pp. 171–176). IEEE Xplore.
Tangkawarow, I. R. H. T., Sarno, R., & Fauzan, A. C. (2018). Evaluation the Performance of Tax Determination Using Discrete Event Simulation. 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), 1–6. https://doi.org/10.1109/ICICOS.2018.8621819
Tangkawarow, I. R. H. T., & Waworuntu, J. (2016). A Comparative of business process modelling techniques. IOP Conference Series: Materials Science and Engineering, 128, 1–16. https://doi.org/10.1088/1757-899X/128/1/012010
Von Rosing, M., White, S. A., Cummins, F., & De Man, H. (2014). Business process model and notation-BPMN. In The Complete Business Process Handbook: Body of Knowledge from Process Modeling to BPM (Vol. 1, pp. 429–453). https://doi.org/10.1016/B978-0-12-799959-3.00021-5
Yaqin, M. A., Sarno, R., & Fauzan, A. C. (2017). Scalability Measurement of Business Process Model Using Business Processes Similarity and Complexity. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), September, 19–21.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 PTIK
This work is licensed under a Creative Commons Attribution 4.0 International License.