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ABSTRACT

This study develops a multi-horizon daily rainfall forecasting model using the Long Short-Term Memory
(LSTM) deep learning method, based on multi-station Automatic Weather Station (AWS) data in Medan
City. Ten-minute AWS data from multiple stations (2021-2024) were merged and time-synchronized
(UTC), followed by a quality control process including physical range checks, rate-of-change filtering,
inter-variable consistency checks, and spike detection. Missing values were addressed using linear
interpolation for short gaps and Multiple Imputation by Chained Equations (MICE) for longer gaps.
Predictor features were constructed from weather parameters (temperature, humidity, pressure, wind,
radiation), aggregated to an hourly scale, and reshaped into input time windows for LSTM. A two-layer
LSTM model (128—64 units, 0.3 dropout, Adam optimizer) was trained to predict daily rainfall up to five
days ahead. Evaluation metrics, including RMSE, MAE, POD, FAR, and CSI (with rainfall threshold
>1 mm/day), indicated strong model performance: for instance, RMSE was below 10 mm/day for 1-3
day horizons, with POD above 0.80 and FAR below 0.20. The LSTM model outperformed conventional
statistical models, yielding an accuracy improvement of approximately 30-40%. These findings
highlight the potential of high-resolution AWS-based automatic forecasting systems to support
hydrometeorological disaster mitigation in tropical urban areas.

Keywords: Automatic weather station, Daily rainfall, Deep learning, Long short-term memory, Medan
city, Multi-horizon forecasting.

INTRODUCTION agriculture, and managing hydrometeorological

Rainfall is a component of the climate and disaster risk. In tropical regions like Indonesia,
hydrological system, playing a crucial role in rainfall patterns vary significantly spatially and
balancing  water  resources,  supporting temporally due to the influence of regional
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atmospheric such as the Asia-Australia
monsoon and the Intertropical Convergence
Zone (ITCZ), global phenomena such as El
Nifio—Southern Oscillation (ENSO) and the
Indian Ocean Dipole (IOD) (Aldrian & Dwi
Susanto, 2003). This variability makes rainfall
prediction at daily and local scales, both a
scientific challenge and a practical exercise.

Medan, as the largest economic center in
North Sumatra, has a complex climatological
character influenced by the topography of the
east coast of Sumatra and by its massive
urbanization. The wurban heat island
phenomenon and local circulation enhance the
formation of convective clouds, which have the
potential to produce intense rainfall (Hidayat &
Soekirno, 2021; Lubis, Situmorang, et al.,
2025). The major flooding event on November
18, 2022, caused by extreme rainfall and the
overflowing of the Deli River, inundating nine
sub-districts with water levels of 10-70 cm
(Ministry of Health of the Republic of
Indonesia, 2022), underscored the urgency of
accurate rainfall forecasting for urban disaster
mitigation.

Conventional statistical methods, such as
ARIMA and linear regression, have limitations
in capturing nonlinear relationships and long-
term dependencies between meteorological
parameters (IPCC), 2023). In contrast, deep
learning approaches such as Long Short-Term
Memory (LSTM) can learn complex temporal
patterns and long-term memory from time
series data (Gao et al., 2022; Hochreiter &
Schmidhuber, 1997; Lubis, Ghazali, et al.,
2025). LSTM has been shown to improve
rainfall prediction accuracy compared to
classical models (Barrera-Animas et al., 2022).
Furthermore, the availability of high-resolution
data from Automatic Weather Stations (AWS)
opens the door to developing prediction models
based on actual observations. AWS records
meteorological parameters such as temperature,
humidity, air pressure, wind speed and
direction, and solar radiation at 10-minute
intervals, thereby capturing micro-atmospheric
dynamics relevant to short-term forecasting
(Cheng et al., 2023; Muhajir et al., 2021; Shaw,
2024: Yuan, 2025).

However, the application of LSTM models
trained on multi-station AWS data to predict
daily rainfall in tropical urban areas of
Indonesia remains rare. Most previous studies
have used only single data sets and failed to
account for spatial relationships among stations,

even though spatial correlation can enrich the
representation of local atmospheric systems.
This study attempts to fill this gap by designing
an LSTM model based on multi-station AWS
data in Medan City to forecast daily rainfall up
to several days in advance (multi-horizon). The
10-minute-resolution =~ AWS  data  were
combined, quality-controlled, imputed using
Multiple Imputation by Chained Equations
(MICE), and transformed into time windows
(windowing) for model input. The prediction
results are then validated against daily
Automatic Rain Gauge (ARG) data in the UTC
time zone to measure the model's accuracy
relative to actual observations.

Using this approach, the research aims to
develop a rainfall forecasting system based on
high-resolution observational data and deep
learning that is adaptive to local conditions. The
research's primary contribution lies in
integrating multi-station spatial dimensions into
a multi-output LSTM architecture, which is
expected to  improve the  temporal
representation and accuracy of daily rainfall
forecasts in tropical urban areas such as Medan.
In addition to providing scientific contributions
to the application of Deep Learning to
hydrometeorology, this research is expected to
support disaster early warning systems and
operational water resource governance.

DATA AND METHODS

This research uses a  quantitative
experimental approach based on data-driven
modeling, focusing on the development and
evaluation of a Long Short-Term Memory
(LSTM) Deep Learning predictive model for
daily rainfall forecasting. Conceptually, the
research design includes four main stages: data
collection and preparation from a multi-station
Automatic Weather Station (AWS) in Medan
City; data preprocessing, including quality
control (QC) and missing data imputation;
sequential data generation for LSTM model
training; and model performance evaluation
against external test and validation data
(Automatic Rain Gauge/ARG).

The overall process is summarized in Figure
1, which displays a flowchart of the research
methodology from data acquisition to model
validation. The research data are sourced from
the AWS network operated by the Meteorology,
Climatology, and Geophysics Agency (BMKG)
in and around Medan. The data comprises four
main stations: Stamet Kualanamu (STA5001),
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Staklim North Sumatra (STA2068), Stamar
Belawan (STW1002), and AAWS Delser
(STA3032). Each AWS records meteorological
parameters at 10-minute intervals, including
rainfall (rr, mm/l10-minute), average air

temperature (tt_air_avg, °C), relative humidity
(th_avg, %), air pressure (pp_air, hPa), wind
speed (ws_avg, m/s), wind direction (wd_avg,
°), and solar radiation (sr_avg, W/m?).
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Location metadata information for each
station is presented in Table 1, which includes
the latitude, longitude, and relative distance of
each station to the center of Medan City. Figure
2 shows a map of the locations of the
observation stations used in this study. To
ensure data quality before use in model training,
a multi-layered quality control (QC) process

was performed following World
Meteorological Organization (WMO)
guidelines (Zahumensky, 2004). The QC stage
includes range checks, spike detection, flatline
tests to detect sensor interference, and
consistency checks between variables (e.g., the
difference between low humidity and high
rainfall).

Tabel 1. Metadata station AWS in Medan city and its surroundings

1D Station Distance to Medan city (km)
STAS5001 Stamet KNO 24.2 km
STA2068 Staklim Sumut 5.3 km
STW1002 Stamar Belawan 18.5 km
STA3032 AAWS Delser 30.2 km
150260 ARG Sunggal 9.0 km

Spike detection was implemented using a
robust z-score method based on the median and
Median Absolute Deviation (MAD), where
values outside £3MAD of the local median
were identified as anomalies and replaced with
missing values (NaN). This QC stage resulted
in a 10-minute time series that was free of
anomalies and ready for imputation.

After the data was declared valid, the
missing data imputation process was performed
to address observation gaps due to sensor or
communication disruptions. Two approaches
were applied sequentially: (1) time-based linear

interpolation for short gaps (< 5 hours), and (2)
Multiple Imputation by Chained Equations
(MICE) for long gaps (> 5 hours). The MICE
method was chosen because it maintains
correlations between meteorological variables
(Little & Rubin, 2019; Van Buuren &
Groothuis-Oudshoorn, 2011).

The implementation was carried out using
Iterative Imputer from scikit-learn with eight
iterations and six closest predictor features. To
ensure there was no statistical bias due to
imputation, a Kernel Density Estimate (KDE)
test was performed on the parameters of
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temperature, humidity, air pressure, and
radiation using a distributional equality test.
The results showed that the differences in
distribution before and after imputation were

relatively small, indicating that the data
imputation process did not alter the statistical
characteristics of the data.
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Figure 2. Map shows the research area.

The next step is the creation of a sequential
dataset that serves as input for the LSTM model.
The imputed data is converted into a windowed
time series format, where each input sample
consists of a sequence of meteorological data
over the past 72 hours (equivalent to 432-
times), and the output is the daily rainfall for the
next five days (multi-horizon forecasting).

The choice of a 3-day input window is based
on the consideration that tropical rainfall
variability is generally influenced by
atmospheric conditions up to 2-3 days in
advance, while a 5-day horizon represents a
statistically reliable short- to medium-term
forecast period (Aldrian, 2008; Aldrian & Dwi
Susanto, 2003: Estiningtyas et al., 2007
Yamanaka, 2016). The windowing is performed
with a 3-hour stride to reduce redundancy. This
process produces a three-part dataset: training
(2021-2023), validation (late 2023), and test
(2024).

Prior to training, all features were
normalized using Robust Scaler, with the
median and interquartile range (IQR) calculated
from the training data only (Kuhn & Johnson,
2013). The Robust Scaler was chosen based on
the skewed distribution of meteorological data
and its high outlier count, making it more robust
to extreme values than the Standard Scaler. The
target output (daily rainfall) was not normalized
to ensure the forecast results remained in
physical units (mm/day) and easily interpreted.

A linear activation function was used in the
output layer because the model's task was
continuous regression. Optimization was

performed using the Adam algorithm with an
initial learning rate of 0.001 (Kingma & Cun,
2010), while the loss function used Mean
Absolute Error (MAE). Training was conducted
for 100 epochs with an early stopping
mechanism (tolerance of 10 epochs) and
Reduce LR On Plateau (a rate reduction of 0.5
if no improvement occurs within 4 epochs). A
summary of the model structure and its
parameters can be seen in Figure 3.

During training, the model received input
from a pooled multi-station data dataset,
assuming that weather conditions across
stations in the Medan area have a high degree of
spatial uniformity (Handoko et al., 1993). This
allows the model to learn the city's general
atmospheric patterns without losing significant
local variations.

Model evaluation was conducted on the test
data (2024) using MAE and Root Mean Square
Error (RMSE) metrics to assess absolute and
squared errors, as well as categorical metrics
such as Probability of Detection (POD), False
Alarm Ratio (FAR), and Critical Success Index
(CSI) with a rainfall threshold of > 1 mm/day
(Chattopadhyay &  Chattopadhyay, 2014;
Lubis, Simanjuntak, et al., 2025; Willmott &
Matsuura, 2005). As a final step, external
validation was conducted using daily rainfall
data from the Automatic Rain Gauge (ARG)
station of the Sunggal Water Company
(PDAM) in Medan City to test the model's
generalizability at locations not included in the
training data.
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RESULTS AND DISCUSSION

The results of this study cover data
processing, model training, and performance
evaluation of the Long Short-Term Memory
(LSTM) model in predicting multi-horizon
daily rainfall based on multi-station Automatic
Weather Station (AWS) data in Medan City.
The analysis process was conducted
quantitatively on the model output, both on test
data and external validation data.

Quality and Validity of Data

The initial phase of the research focused on
ensuring the quality of the AWS data, which
serves as the primary input for the LSTM
model. Quality control results indicate that the
AWS data used has an average completeness
level above 98% after undergoing a review and
imputation process. A summary of the
completeness of the data for the 2021-2024
period is shown in Table 2, while a visualization

of the comparison of completeness between
stations for the 2018-2025 period is shown in
Figure 4. STA1002 does not contain data from
2018-2020, so to optimize imputation results,
only data from 2021-2024 was used. The results
of the examination showed that from 2021 to
2024, most stations achieved completeness
above 97%. Only one station (STW1002,
Belawan) experienced significant data loss in
2021 (approximately 89% of data loss) due to
sensor failure, but data returned to normal the
following year. The pattern of data loss that
emerged tended to be non-random and related
to specific periods, indicating a type of missing
not at random (MNAR). Therefore, the
application of imputation based on Multiple
Imputation by Chained Equations (MICE) was
deemed appropriate, as it maintained
relationships between meteorological variables
without altering the statistical structure of the
data (Little & Rubin, 2019).

Tabel 2. Recapitulation of AWS data completeness per station per year (2021-2024)

Stations Year Total Data (10-min) % Data Valid % Data Loss Total Lines
STA2068 2021 41820 79.57 20.43 42870
STA2068 2022 51381 97.76 2.24 51398
STA2068 2023 51896 98.74 1.26 52302
STA2068 2024 51750 98.19 1.81 56510
STA3032 2021 31437 59.81 40.19 31458
STA3032 2022 52248 99.41 0.59 52248
STA3032 2023 52163 99.24 0.76 52163
STA3032 2024 51405 97.54 2.46 51405
STAS5001 2021 50948 96.93 3.07 50948
STAS5001 2022 52386 99.67 0.33 52386
STAS5001 2023 52498 99.88 0.12 52498
STAS5001 2024 52201 99.05 0.95 52201
STW1002 2021 5584 10.62 89.38 5584
STW1002 2022 49304 93.81 6.19 49304
STW1002 2023 52494 99.87 0.13 52494
STW1002 2024 52687 99.97 0.03 52687

In addition to data quantity, a missingness
matrix was also examined. Figure 5 shows the
temporal distribution of missing data (marked
by dark gray blocks) throughout the period. The
apparent pattern indicates that missingness is
not purely random but rather clustered within
specific periods. This indicates a type of non-
random missingness (Missing Not at Random),
necessitating gap filling to avoid bias toward
specific seasons.

Evaluation of the imputation results shows
that the daily rainfall distribution before and

after imputation retains a right-skewed shape
typical of tropical climates, with rainfall-free
days predominating at more than 60% of the
total. This is evident in Figure 6, which shows a
histogram of daily rainfall before and after
imputation. The similarity in the distribution
shape indicates that the data imputation process
did not shift the natural characteristics of the
data, so the preprocessed dataset can be
considered representative and reliable for
training predictive models.
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Figure 3. Percentage of AWS data completeness per year at each station (10-minute resolution,
UTC time); significant improvements were seen in 2022-2024 at all stations compared to 2018—

In addition to rainfall, the distribution of
other meteorological variables (temperature,
humidity, air pressure, and radiation) also
remained consistent before and after the QC-
imputation process. The Kernel Density
Estimate (KDE) curves in Figure 5 show very
small differences in key parameters, indicating
that the data cleaning and imputation steps
successfully maintained the overall statistical
structure of the data. It can be seen that the
“before” (blue) and “after” (orange) distribution
curves overlap closely, with small differences in
peaks or widths.

For example, the daily temperature
distribution remains unimodal with a mean of
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around 27-28°C, the relative humidity
distribution maintains a double-peaked shape
(characteristic of morning and afternoon
humidity patterns), and so on. Small
improvements have occurred: the “after”
imputation data tends to have a smoother curve
and is more consistent across stations, after
extreme anomalies are removed during the QC
stage. This indicates that the applied QC and
imputation methods are effective: they are able
to fill in missing data without causing
significant distortions to the statistical structure
of the data. Thus, the pre-processed dataset is
suitable for use as input for predictive models.
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Figure 4. Histogram of daily rainfall distribution before (a) and after (b) the missing data
imputation process

Sequential Data and Training

The pre-processed dataset is then converted
into a sequential format for processing by the
LSTM network. Each input sample consists of
a sequence of meteorological data from the last
72 hours (432 time steps), while the target
output is the total daily rainfall for the next five

days. This scheme allows the model to learn the
medium-term temporal relationship between
past atmospheric conditions and future rainfall
probability. A representation of this sequential
data is shown in Figure 6, which shows the
temporal variation of meteorological variables
at one of the random observation stations.

GEOGRAPHIA: Jurnal Pendidikan dan Penelitian Geografi,Vol. 6 No. 2 (2025)



NV Sinaga, et. al. Daily Rainfall Forecast Based on Multi-Staton Observation...269

Suhu (°C) - KDE

Kelembapan (%) - KDE

2 0

Sebelum

Tekanan (hPa) - KDE

1002 1004

i (W m

?) - KDE

1008 1010 1012

0025

0020

sebelum
Sesudan

Figure 5. KDE graph of distribution of air temperature, humidity, pressure, and radiation,
before vs after QC/imputation.

The model architecture consists of two
consecutive LSTM layers (128 and 64 units),
each with a dropout of 0.2 to prevent
overfitting, and a Dense layer of five neurons
representing the daily rainfall forecast for the
next five days. The training process
demonstrated stable convergence, with a Mean
Absolute Error (MAE) of approximately 6.0
mm for the training data and approximately 8.3
mm per day for the validation data. The training
and validation curves are shown in Figure 6,
which show no significant differences between
the two, indicating that the model does not
suffer from overfitting and is capable of good
generalization.

Overall, the results indicate that the LSTM
model based on multi-station AWS data is
capable of producing daily rainfall forecasts
with moderate error and good interhorizon
stability. The average MAE value of around 7—
8 mm/day indicates that the model is
sufficiently accurate for short-term operational
applications, such as daily rainfall early
warning systems. The consistency of the results
up to a five-day horizon demonstrates that the
LSTM's long-term memory is effective in
recognizing temporal rainfall patterns in
Medan. The model's performance in detecting
extreme rainfall is still limited, largely due to
the predominance of zero data (rainless days)
and the relatively small number.
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Figure 6. Example of daily meteorological data sequence representation (UTC) at station
STW1002 on November 12, 2023.

GEOGRAPHIA: Jurnal Pendidikan dan Penelitian Geografi,Vol. 6 No. 2 (2025)



NV Sinaga, et. al. Daily Rainfall Forecast Based on Multi-Staton Observation...270

These findings align with previous research
showing that LSTM-based models outperform
short-term quantitative predictions compared to
extreme event predictions (Ghimire et al.,
2021). Although external validation showed a
performance  decline, this opens up
opportunities  for  further  development.
Integrating spatial variables (e.g., latitude—
longitude coordinates or radar imagery) into the
LSTM architecture has the potential to improve
the model's ability to recognize spatial rainfall
gradients (Gamboa-Villafruela et al., 2021).

Furthermore, the application of transfer
learning across regions could expand the
model's application to other cities with similar
AWS networks. Theoretically, these research
results strengthen the argument that deep
learning approaches such as LSTMs can replace
conventional statistical models (ARIMA, linear
regression) in rainfall prediction in tropical
regions with superior performance (Barrera-
Animas et al., 2022). Practically, these research
results demonstrate the potential for developing
an automated rainfall forecasting system based
on high-resolution observational data.

CONCLUSION

This research successfully developed a daily
rainfall prediction model based on Long Short-
Term Memory (LSTM) deep learning, utilizing
high-resolution observation data from a multi-
station Automatic Weather Station (AWS) in
Medan City. The results demonstrate that the
LSTM model is able to effectively learn
temporal rainfall patterns and produce daily
forecasts up to five days in advance with
relatively low and stable error rates across
horizons. The average Mean Absolute Error
(MAE) of 7-8 mm/day and Root Mean Square
Error (RMSE) of around 15 mm/day on the
2024 test data demonstrates that this approach
has competitive predictive performance
compared to conventional statistical methods
such as ARIMA and linear regression. The
application of a two-layer LSTM architecture
with a 72-hour input window and multi-horizon
output has proven effective in capturing
temporal relationships between meteorological
parameters, such as temperature, humidity,
pressure, wind, and radiation. Furthermore, the
Multiple Imputation by Chained Equations
(MICE)-based quality control and imputation
process applied to AWS data was proven to
maintain the integrity of the data distribution
without introducing significant statistical bias.

Although the model demonstrated good
accuracy in quantitatively predicting light to
moderate rainfall, the analysis also revealed a
tendency to underestimate extreme rainfall
events. External validation using Automatic
Rain Gauge (ARG) data at the Sunggal Water
Company (PDAM) showed a decrease in
performance due to spatial differences between
observation points and the training data,
indicating the need for adjustments or spatial
calibration if the model is applied to other
locations. Thus, this study demonstrates that the
use of LSTM based on multi-station AWS data
can be a reliable approach for automated daily
rainfall forecasting systems in tropical urban
areas like Medan, while also providing an
empirical basis for the development of
hydrometeorological ~ disaster =~ mitigation
systems based on high-resolution observational.
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