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ABSTRACT 

This study develops a multi-horizon daily rainfall forecasting model using the Long Short-Term Memory 

(LSTM) deep learning method, based on multi-station Automatic Weather Station (AWS) data in Medan 

City. Ten-minute AWS data from multiple stations (2021–2024) were merged and time-synchronized 

(UTC), followed by a quality control process including physical range checks, rate-of-change filtering, 

inter-variable consistency checks, and spike detection. Missing values were addressed using linear 

interpolation for short gaps and Multiple Imputation by Chained Equations (MICE) for longer gaps. 

Predictor features were constructed from weather parameters (temperature, humidity, pressure, wind, 

radiation), aggregated to an hourly scale, and reshaped into input time windows for LSTM. A two-layer 

LSTM model (128–64 units, 0.3 dropout, Adam optimizer) was trained to predict daily rainfall up to five 

days ahead. Evaluation metrics, including RMSE, MAE, POD, FAR, and CSI (with rainfall threshold 

≥1 mm/day), indicated strong model performance: for instance, RMSE was below 10 mm/day for 1–3 

day horizons, with POD above 0.80 and FAR below 0.20. The LSTM model outperformed conventional 

statistical models, yielding an accuracy improvement of approximately 30–40%. These findings 

highlight the potential of high-resolution AWS-based automatic forecasting systems to support 

hydrometeorological disaster mitigation in tropical urban areas. 

 

Keywords: Automatic weather station, Daily rainfall, Deep learning, Long short-term memory, Medan 

city, Multi-horizon forecasting. 

 

INTRODUCTION 

Rainfall is a component of the climate and 

hydrological system, playing a crucial role in 

balancing water resources, supporting 

agriculture, and managing hydrometeorological 

disaster risk. In tropical regions like Indonesia, 

rainfall patterns vary significantly spatially and 

temporally due to the influence of regional 
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atmospheric such as the Asia-Australia 

monsoon and the Intertropical Convergence 

Zone (ITCZ), global phenomena such as El 

Niño–Southern Oscillation (ENSO) and the 

Indian Ocean Dipole (IOD) (Aldrian & Dwi 

Susanto, 2003). This variability makes rainfall 

prediction at daily and local scales, both a 

scientific challenge and a practical exercise. 

Medan, as the largest economic center in 

North Sumatra, has a complex climatological 

character influenced by the topography of the 

east coast of Sumatra and by its massive 

urbanization. The urban heat island 

phenomenon and local circulation enhance the 

formation of convective clouds, which have the 

potential to produce intense rainfall (Hidayat & 

Soekirno, 2021; Lubis, Situmorang, et al., 

2025). The major flooding event on November 

18, 2022, caused by extreme rainfall and the 

overflowing of the Deli River, inundating nine 

sub-districts with water levels of 10-70 cm 

(Ministry of Health of the Republic of 

Indonesia, 2022), underscored the urgency of 

accurate rainfall forecasting for urban disaster 

mitigation. 

Conventional statistical methods, such as 

ARIMA and linear regression, have limitations 

in capturing nonlinear relationships and long-

term dependencies between meteorological 

parameters (IPCC), 2023). In contrast, deep 

learning approaches such as Long Short-Term 

Memory (LSTM) can learn complex temporal 

patterns and long-term memory from time 

series data (Gao et al., 2022; Hochreiter & 

Schmidhuber, 1997; Lubis, Ghazali, et al., 

2025). LSTM has been shown to improve 

rainfall prediction accuracy compared to 

classical models (Barrera-Animas et al., 2022). 

Furthermore, the availability of high-resolution 

data from Automatic Weather Stations (AWS) 

opens the door to developing prediction models 

based on actual observations. AWS records 

meteorological parameters such as temperature, 

humidity, air pressure, wind speed and 

direction, and solar radiation at 10-minute 

intervals, thereby capturing micro-atmospheric 

dynamics relevant to short-term forecasting 

(Cheng et al., 2023; Muhajir et al., 2021; Shaw, 

2024; Yuan, 2025). 

However, the application of LSTM models 

trained on multi-station AWS data to predict 

daily rainfall in tropical urban areas of 

Indonesia remains rare. Most previous studies 

have used only single data sets and failed to 

account for spatial relationships among stations, 

even though spatial correlation can enrich the 

representation of local atmospheric systems. 

This study attempts to fill this gap by designing 

an LSTM model based on multi-station AWS 

data in Medan City to forecast daily rainfall up 

to several days in advance (multi-horizon). The 

10-minute-resolution AWS data were 

combined, quality-controlled, imputed using 

Multiple Imputation by Chained Equations 

(MICE), and transformed into time windows 

(windowing) for model input. The prediction 

results are then validated against daily 

Automatic Rain Gauge (ARG) data in the UTC 

time zone to measure the model's accuracy 

relative to actual observations. 

Using this approach, the research aims to 

develop a rainfall forecasting system based on 

high-resolution observational data and deep 

learning that is adaptive to local conditions. The 

research's primary contribution lies in 

integrating multi-station spatial dimensions into 

a multi-output LSTM architecture, which is 

expected to improve the temporal 

representation and accuracy of daily rainfall 

forecasts in tropical urban areas such as Medan. 

In addition to providing scientific contributions 

to the application of Deep Learning to 

hydrometeorology, this research is expected to 

support disaster early warning systems and 

operational water resource governance. 

 

DATA AND METHODS 

This research uses a quantitative 

experimental approach based on data-driven 

modeling, focusing on the development and 

evaluation of a Long Short-Term Memory 

(LSTM) Deep Learning predictive model for 

daily rainfall forecasting. Conceptually, the 

research design includes four main stages: data 

collection and preparation from a multi-station 

Automatic Weather Station (AWS) in Medan 

City; data preprocessing, including quality 

control (QC) and missing data imputation; 

sequential data generation for LSTM model 

training; and model performance evaluation 

against external test and validation data 

(Automatic Rain Gauge/ARG). 

The overall process is summarized in Figure 

1, which displays a flowchart of the research 

methodology from data acquisition to model 

validation. The research data are sourced from 

the AWS network operated by the Meteorology, 

Climatology, and Geophysics Agency (BMKG) 

in and around Medan. The data comprises four 

main stations: Stamet Kualanamu (STA5001), 
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Staklim North Sumatra (STA2068), Stamar 

Belawan (STW1002), and AAWS Delser 

(STA3032). Each AWS records meteorological 

parameters at 10-minute intervals, including 

rainfall (rr, mm/10-minute), average air 

temperature (tt_air_avg, °C), relative humidity 

(rh_avg, %), air pressure (pp_air, hPa), wind 

speed (ws_avg, m/s), wind direction (wd_avg, 

°), and solar radiation (sr_avg, W/m²). 

 

 
Figure 1. Research methodology flowchart: pre-processing stages, feature and sequence 

formation, LSTM model training, and evaluation and validation of results 

 

Location metadata information for each 

station is presented in Table 1, which includes 

the latitude, longitude, and relative distance of 

each station to the center of Medan City. Figure 

2 shows a map of the locations of the 

observation stations used in this study. To 

ensure data quality before use in model training, 

a multi-layered quality control (QC) process 

was performed following World 

Meteorological Organization (WMO) 

guidelines (Zahumenský, 2004). The QC stage 

includes range checks, spike detection, flatline 

tests to detect sensor interference, and 

consistency checks between variables (e.g., the 

difference between low humidity and high 

rainfall). 

 

Tabel 1. Metadata station AWS in Medan city and its surroundings 

ID  Station Distance to Medan city (km) 

STA5001 Stamet KNO 24.2 km 

STA2068 Staklim Sumut 5.3 km 

STW1002 Stamar Belawan 18.5 km 

STA3032 AAWS Delser 30.2 km 

150260 ARG Sunggal 9.0 km 

 

Spike detection was implemented using a 

robust z-score method based on the median and 

Median Absolute Deviation (MAD), where 

values outside ±3MAD of the local median 

were identified as anomalies and replaced with 

missing values (NaN). This QC stage resulted 

in a 10-minute time series that was free of 

anomalies and ready for imputation. 

After the data was declared valid, the 

missing data imputation process was performed 

to address observation gaps due to sensor or 

communication disruptions. Two approaches 

were applied sequentially: (1) time-based linear 

interpolation for short gaps (≤ 5 hours), and (2) 

Multiple Imputation by Chained Equations 

(MICE) for long gaps (> 5 hours). The MICE 

method was chosen because it maintains 

correlations between meteorological variables 

(Little & Rubin, 2019; Van Buuren & 

Groothuis-Oudshoorn, 2011).  

The implementation was carried out using 

Iterative Imputer from scikit-learn with eight 

iterations and six closest predictor features. To 

ensure there was no statistical bias due to 

imputation, a Kernel Density Estimate (KDE) 

test was performed on the parameters of 
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temperature, humidity, air pressure, and 

radiation using a distributional equality test. 

The results showed that the differences in 

distribution before and after imputation were 

relatively small, indicating that the data 

imputation process did not alter the statistical 

characteristics of the data. 

 

 
Figure 2. Map shows the research area. 

 

The next step is the creation of a sequential 

dataset that serves as input for the LSTM model. 

The imputed data is converted into a windowed 

time series format, where each input sample 

consists of a sequence of meteorological data 

over the past 72 hours (equivalent to 432-

times), and the output is the daily rainfall for the 

next five days (multi-horizon forecasting). 

The choice of a 3-day input window is based 

on the consideration that tropical rainfall 

variability is generally influenced by 

atmospheric conditions up to 2–3 days in 

advance, while a 5-day horizon represents a 

statistically reliable short- to medium-term 

forecast period (Aldrian, 2008; Aldrian & Dwi 

Susanto, 2003; Estiningtyas et al., 2007; 

Yamanaka, 2016). The windowing is performed 

with a 3-hour stride to reduce redundancy. This 

process produces a three-part dataset: training 

(2021–2023), validation (late 2023), and test 

(2024). 

Prior to training, all features were 

normalized using Robust Scaler, with the 

median and interquartile range (IQR) calculated 

from the training data only (Kuhn & Johnson, 

2013). The Robust Scaler was chosen based on 

the skewed distribution of meteorological data 

and its high outlier count, making it more robust 

to extreme values than the Standard Scaler. The 

target output (daily rainfall) was not normalized 

to ensure the forecast results remained in 

physical units (mm/day) and easily interpreted. 

A linear activation function was used in the 

output layer because the model's task was 

continuous regression. Optimization was 

performed using the Adam algorithm with an 

initial learning rate of 0.001 (Kingma & Cun, 

2010), while the loss function used Mean 

Absolute Error (MAE). Training was conducted 

for 100 epochs with an early stopping 

mechanism (tolerance of 10 epochs) and 

Reduce LR On Plateau (a rate reduction of 0.5 

if no improvement occurs within 4 epochs). A 

summary of the model structure and its 

parameters can be seen in Figure 3. 

During training, the model received input 

from a pooled multi-station data dataset, 

assuming that weather conditions across 

stations in the Medan area have a high degree of 

spatial uniformity (Handoko et al., 1993). This 

allows the model to learn the city's general 

atmospheric patterns without losing significant 

local variations. 

Model evaluation was conducted on the test 

data (2024) using MAE and Root Mean Square 

Error (RMSE) metrics to assess absolute and 

squared errors, as well as categorical metrics 

such as Probability of Detection (POD), False 

Alarm Ratio (FAR), and Critical Success Index 

(CSI) with a rainfall threshold of ≥ 1 mm/day 

(Chattopadhyay & Chattopadhyay, 2014; 

Lubis, Simanjuntak, et al., 2025; Willmott & 

Matsuura, 2005). As a final step, external 

validation was conducted using daily rainfall 

data from the Automatic Rain Gauge (ARG) 

station of the Sunggal Water Company 

(PDAM) in Medan City to test the model's 

generalizability at locations not included in the 

training data. 
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RESULTS AND DISCUSSION 

The results of this study cover data 

processing, model training, and performance 

evaluation of the Long Short-Term Memory 

(LSTM) model in predicting multi-horizon 

daily rainfall based on multi-station Automatic 

Weather Station (AWS) data in Medan City. 

The analysis process was conducted 

quantitatively on the model output, both on test 

data and external validation data. 

 

Quality and Validity of Data 

The initial phase of the research focused on 

ensuring the quality of the AWS data, which 

serves as the primary input for the LSTM 

model. Quality control results indicate that the 

AWS data used has an average completeness 

level above 98% after undergoing a review and 

imputation process. A summary of the 

completeness of the data for the 2021-2024 

period is shown in Table 2, while a visualization 

of the comparison of completeness between 

stations for the 2018-2025 period is shown in 

Figure 4. STA1002 does not contain data from 

2018-2020, so to optimize imputation results, 

only data from 2021-2024 was used. The results 

of the examination showed that from 2021 to 

2024, most stations achieved completeness 

above 97%. Only one station (STW1002, 

Belawan) experienced significant data loss in 

2021 (approximately 89% of data loss) due to 

sensor failure, but data returned to normal the 

following year. The pattern of data loss that 

emerged tended to be non-random and related 

to specific periods, indicating a type of missing 

not at random (MNAR). Therefore, the 

application of imputation based on Multiple 

Imputation by Chained Equations (MICE) was 

deemed appropriate, as it maintained 

relationships between meteorological variables 

without altering the statistical structure of the 

data (Little & Rubin, 2019). 
 

Tabel 2. Recapitulation of AWS data completeness per station per year (2021–2024) 

Stations Year Total Data (10-min) % Data Valid % Data Loss Total Lines 

STA2068 2021 41820 79.57 20.43 42870 

STA2068 2022 51381 97.76 2.24 51398 

STA2068 2023 51896 98.74 1.26 52302 

STA2068 2024 51750 98.19 1.81 56510 

STA3032 2021 31437 59.81 40.19 31458 

STA3032 2022 52248 99.41 0.59 52248 

STA3032 2023 52163 99.24 0.76 52163 

STA3032 2024 51405 97.54 2.46 51405 

STA5001 2021 50948 96.93 3.07 50948 

STA5001 2022 52386 99.67 0.33 52386 

STA5001 2023 52498 99.88 0.12 52498 

STA5001 2024 52201 99.05 0.95 52201 

STW1002 2021 5584 10.62 89.38 5584 

STW1002 2022 49304 93.81 6.19 49304 

STW1002 2023 52494 99.87 0.13 52494 

STW1002 2024 52687 99.97 0.03 52687 

In addition to data quantity, a missingness 

matrix was also examined. Figure 5 shows the 

temporal distribution of missing data (marked 

by dark gray blocks) throughout the period. The 

apparent pattern indicates that missingness is 

not purely random but rather clustered within 

specific periods. This indicates a type of non-

random missingness (Missing Not at Random), 

necessitating gap filling to avoid bias toward 

specific seasons. 

Evaluation of the imputation results shows 

that the daily rainfall distribution before and 

after imputation retains a right-skewed shape 

typical of tropical climates, with rainfall-free 

days predominating at more than 60% of the 

total. This is evident in Figure 6, which shows a 

histogram of daily rainfall before and after 

imputation. The similarity in the distribution 

shape indicates that the data imputation process 

did not shift the natural characteristics of the 

data, so the preprocessed dataset can be 

considered representative and reliable for 

training predictive models.  
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Figure 3. Percentage of AWS data completeness per year at each station (10-minute resolution, 

UTC time); significant improvements were seen in 2022–2024 at all stations compared to 2018–

2020. 

 

In addition to rainfall, the distribution of 

other meteorological variables (temperature, 

humidity, air pressure, and radiation) also 

remained consistent before and after the QC-

imputation process. The Kernel Density 

Estimate (KDE) curves in Figure 5 show very 

small differences in key parameters, indicating 

that the data cleaning and imputation steps 

successfully maintained the overall statistical 

structure of the data. It can be seen that the 

“before” (blue) and “after” (orange) distribution 

curves overlap closely, with small differences in 

peaks or widths.  

For example, the daily temperature 

distribution remains unimodal with a mean of 

around 27–28°C, the relative humidity 

distribution maintains a double-peaked shape 

(characteristic of morning and afternoon 

humidity patterns), and so on. Small 

improvements have occurred: the “after” 

imputation data tends to have a smoother curve 

and is more consistent across stations, after 

extreme anomalies are removed during the QC 

stage. This indicates that the applied QC and 

imputation methods are effective: they are able 

to fill in missing data without causing 

significant distortions to the statistical structure 

of the data. Thus, the pre-processed dataset is 

suitable for use as input for predictive models.

 

 
Figure 4. Histogram of daily rainfall distribution before (a) and after (b) the missing data 

imputation process 

 

Sequential Data and Training 

The pre-processed dataset is then converted 

into a sequential format for processing by the 

LSTM network. Each input sample consists of 

a sequence of meteorological data from the last 

72 hours (432 time steps), while the target 

output is the total daily rainfall for the next five 

days. This scheme allows the model to learn the 

medium-term temporal relationship between 

past atmospheric conditions and future rainfall 

probability. A representation of this sequential 

data is shown in Figure 6, which shows the 

temporal variation of meteorological variables 

at one of the random observation stations.
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Figure 5. KDE graph of distribution of air temperature, humidity, pressure, and radiation, 

before vs after QC/imputation. 

 

The model architecture consists of two 

consecutive LSTM layers (128 and 64 units), 

each with a dropout of 0.2 to prevent 

overfitting, and a Dense layer of five neurons 

representing the daily rainfall forecast for the 

next five days. The training process 

demonstrated stable convergence, with a Mean 

Absolute Error (MAE) of approximately 6.0 

mm for the training data and approximately 8.3 

mm per day for the validation data. The training 

and validation curves are shown in Figure 6, 

which show no significant differences between 

the two, indicating that the model does not 

suffer from overfitting and is capable of good 

generalization. 

Overall, the results indicate that the LSTM 

model based on multi-station AWS data is 

capable of producing daily rainfall forecasts 

with moderate error and good interhorizon 

stability. The average MAE value of around 7–

8 mm/day indicates that the model is 

sufficiently accurate for short-term operational 

applications, such as daily rainfall early 

warning systems. The consistency of the results 

up to a five-day horizon demonstrates that the 

LSTM's long-term memory is effective in 

recognizing temporal rainfall patterns in 

Medan. The model's performance in detecting 

extreme rainfall is still limited, largely due to 

the predominance of zero data (rainless days) 

and the relatively small number.

 

 
Figure 6. Example of daily meteorological data sequence representation (UTC) at station 

STW1002 on November 12, 2023. 
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These findings align with previous research 

showing that LSTM-based models outperform 

short-term quantitative predictions compared to 

extreme event predictions (Ghimire et al., 

2021). Although external validation showed a 

performance decline, this opens up 

opportunities for further development. 

Integrating spatial variables (e.g., latitude–

longitude coordinates or radar imagery) into the 

LSTM architecture has the potential to improve 

the model's ability to recognize spatial rainfall 

gradients (Gamboa-Villafruela et al., 2021). 

Furthermore, the application of transfer 

learning across regions could expand the 

model's application to other cities with similar 

AWS networks. Theoretically, these research 

results strengthen the argument that deep 

learning approaches such as LSTMs can replace 

conventional statistical models (ARIMA, linear 

regression) in rainfall prediction in tropical 

regions with superior performance (Barrera-

Animas et al., 2022). Practically, these research 

results demonstrate the potential for developing 

an automated rainfall forecasting system based 

on high-resolution observational data. 

 

CONCLUSION 

This research successfully developed a daily 

rainfall prediction model based on Long Short-

Term Memory (LSTM) deep learning, utilizing 

high-resolution observation data from a multi-

station Automatic Weather Station (AWS) in 

Medan City. The results demonstrate that the 

LSTM model is able to effectively learn 

temporal rainfall patterns and produce daily 

forecasts up to five days in advance with 

relatively low and stable error rates across 

horizons. The average Mean Absolute Error 

(MAE) of 7–8 mm/day and Root Mean Square 

Error (RMSE) of around 15 mm/day on the 

2024 test data demonstrates that this approach 

has competitive predictive performance 

compared to conventional statistical methods 

such as ARIMA and linear regression. The 

application of a two-layer LSTM architecture 

with a 72-hour input window and multi-horizon 

output has proven effective in capturing 

temporal relationships between meteorological 

parameters, such as temperature, humidity, 

pressure, wind, and radiation. Furthermore, the 

Multiple Imputation by Chained Equations 

(MICE)-based quality control and imputation 

process applied to AWS data was proven to 

maintain the integrity of the data distribution 

without introducing significant statistical bias.  

Although the model demonstrated good 

accuracy in quantitatively predicting light to 

moderate rainfall, the analysis also revealed a 

tendency to underestimate extreme rainfall 

events. External validation using Automatic 

Rain Gauge (ARG) data at the Sunggal Water 

Company (PDAM) showed a decrease in 

performance due to spatial differences between 

observation points and the training data, 

indicating the need for adjustments or spatial 

calibration if the model is applied to other 

locations. Thus, this study demonstrates that the 

use of LSTM based on multi-station AWS data 

can be a reliable approach for automated daily 

rainfall forecasting systems in tropical urban 

areas like Medan, while also providing an 

empirical basis for the development of 

hydrometeorological disaster mitigation 

systems based on high-resolution observational. 
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