Prediksi Pasien Terkena Penyakit HIV Dengan Algoritma K-Nearest Neighbor (KNN) di RSUD Dr.Chasbullah Abdul Madjid Kota Bekasi

Authors

  • Abdul Aziz Firdaus Universitas Pelita Bangsa
  • Sanudin Sanudin Universitas Pelita Bangsa
  • Aceng Badruzzaman Universitas Pelita Bangsa

DOI:

https://doi.org/10.53682/jpjsre.v6i1.11357

Keywords:

Prediction, HIV/AIDS, Machine Learning, K-Nearest Neigbbor, Website

Abstract

HIV/AIDS is a global health concern present in almost every part of the world. The advancement of information system technology has helped solve various problems across different fields, one of which is through the application of data mining. The utilization of data mining is not only implemented in the healthcare sector but also in the technology industry. One method to predict patients who potentially have HIV/AIDS is by using Machine Learning (ML). ML aims to train models with algorithms capable of performing statistical analysis using Supervised Learning techniques to generate accurate predictions. Prediction is one of the most important statistical elements in the decision-making process. This research uses the K-Nearest Neighbor algorithm, which classifies data based on the majority class of K nearest neighbors. The algorithm is combined with the SMOTETomek technique as a resampling method to address data containing noise and class imbalance problems. The dataset used to train the K- Nearest Neighbor model comes from the Voluntary Counselling and Testing (VCT) unit with a total of 2,205 data points. The disease testing prediction results are then processed and visualized in a website format. Based on testing conducted using Confusion Matrix, the model’s performance measurement results show and Accuracy value of 97.96%, Precision of 78.61%, Recall of 98.88%, and f1-score of 84.45%. The results indicate that the use of machine learning is quite effective for implementation in HIV/AIDS disease prediction.

References

Baharuddin, M. M., Azis, H., & Hasanuddin, T. (2019). Analisis Performa Metode K- Nearest Neighbor Untuk Identifikasi Jenis Kaca. ILKOM Jurnal Ilmiah, 11(3), 269–

https://doi.org/10.33096/ilkom.v11i3.489.269-274

Cahyanti, D., Rahmayani, A., & Ainy Husniar, S. (2020). Indonesian Journal of Data and Science Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara. 1(2), 39–43.

Juhaefah, A., Paramita, S., Kosala, K., & Gunawan, C. A. (2020). GAMBARAN KARAKTERISTIK PASIEN HIV/AIDS YANG MENDAPAT ANTIRETROVIRAL THERAPY (ART).

Dalam Jurnal Medika Karya Ilmiah Kesehatan (Vol. 5, Nomor 1). Online.

Latifah, R., Setia Wulandari, E., & Priadhana Edi Kreshna, dan. (2019). Model Decision Tree untuk Prediksi Jadwal Kerja menggunakan Scikit-Learn (Vol. 16).

Maskuri, M. N., Sukerti, K., & Herdian Bhakti, R. M. (t.t.). Penerapan Algoritma K- Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke Stroke Desease Predict Using KNN Algorithm. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 4(1).

Pangaribuan, S. M., Maulidanti, N. N., Siringoringo, L., Rs, A., Cikini, P., & Indonesia, J. (t.t.). Pengetahuan Remaja Tentang Hiv/Aids Di Kelurahan Menteng Jakarta Pusat. JAKHKJ, 7(2), 2021.

S. Rohmah, R. L. Y. I. H. (2024). Hubungan Pengetahuan Siswa Tentang Hivaids Dengan Sikap Pencegahan Hivaids Melalui Penerapan Budaya Kagaluhan Di Smkn 1 Ciamis. JKDB: Jurnal Konservasi dan Budaya, 103–116.

Setiyanto Rudi, Nurmaesah Nunung, & Rahayu Astuti Sri Nyai. (2019). Jurnal Perancangan Sistem Definisi. JURNAL SISFOTEK GLOBAL, 9, 139–139.

Siburian, N., Cholissodin, I., & Adikara, P. P. (2020). Penerapan Metode Fuzzy K- Nearest Neighbor Pada Klasifikasi Penyakit Menular Seksual Pria (Vol. 4, Nomor 11). http://j-ptiik.ub.ac.id.

Zahra, D., Nurdin, A., Fitria, U., Dinen, K. A., & Kurnia, R. (2021). Pemanfaatan Teknologi Dalam Bidang Kesehatan Masyarakat. Dalam Public health Journal.https://teewanjournal.com/index. php/phj/index.

Zulaikhah, S. H., Aziz, A., & Harianto, W. (2022). Optimasi Algoritma K-Nearest Neighbor (Knn) Dengan Normalisasi Dan Seleksi Fitur Untuk Klasifikasi Penyakit Liver. Dalam Jurnal Mahasiswa Teknik Informatika) (Vol. 6, Nomor 2). https://archive.ics.uci.edu/ml/index.php.

Published

2025-06-01

How to Cite

Firdaus, A. A., Sanudin, S., & Aceng Badruzzaman. (2025). Prediksi Pasien Terkena Penyakit HIV Dengan Algoritma K-Nearest Neighbor (KNN) di RSUD Dr.Chasbullah Abdul Madjid Kota Bekasi. JURNAL PARADIGMA : Journal of Sociology Research and Education, 6(1), 125-138. https://doi.org/10.53682/jpjsre.v6i1.11357