Studi Sistem Pengisian Cepat Baterai Kendaraan Listrik Berbasis Papan Pengendali OpenEVSE
DOI:
https://doi.org/10.53682/edunitro.v2i1.3909Keywords:
sistem pengisian cepat baterai, kendaraan listrik, papan kontrol OpenEVSEAbstract
Abstrak– Penelitian ini bertujuan untuk mempelajari sistem pengisian cepat baterai kendaraan listrik dengan menggunakan papan sistem kontrol OpenEVSE. Seiring bertambahnya jumlah kendaraan listrik yang masuk dalam ekosistem energi hijau, maka kebutuhan terhadap stasiun pengisian kendaraan listrik umum (SPKLU) juga meningkat. Kita membutuhkan perangkat pengisi baterai kendaraan listrik yang cepat dan handal, bukan lagi sebuah prototype, karena teknologi ini sudah berkembang pesat sejak satu dekade yang lalu. Sistem pengisian baterai kendaraan listrik ini sudah menggunakan teknlogi fabrikasi yang sangat baik. Teknologi terkini adalah dikembangkannya papan sistem kontrol terpadu yang khusus untuk desain perangkat pengisi baterai kendaraan listrik. Papan sistem ini adalah bersifat open source sehingga bisa dikembangkan sesuai kebutuhan.
References
Aggeler, D., Canales, F., Parra, H. Z.-D. La, Coccia, A., Butcher, N., & Apeldoorn, O. (2010). Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 1–8. https://doi.org/10.1109/ISGTEUROPE.2010.5638899
Arancibia, A., & Strunz, K. (2012). Modeling of an electric vehicle charging station for fast DC charging. 2012 IEEE International Electric Vehicle Conference, 1–6. https://doi.org/10.1109/IEVC.2012.6183232
Banvait, H., Anwar, S., & Chen, Y. (2009). A rule-based energy management strategy for Plug-in Hybrid Electric Vehicle (PHEV). 2009 American Control Conference, 3938–3943. https://doi.org/10.1109/ACC.2009.5160242
Bohn, T., & Chaudhry, H. (2012). Overview of SAE standards for plug-in electric vehicle. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), 1–7. https://doi.org/10.1109/ISGT.2012.6175597
Brown, K. J. (2013). Electric vehicle supply equipment; a safety device. 2013 IEEE Transportation Electrification Conference and Expo (ITEC), 1–5. https://doi.org/10.1109/ITEC.2013.6573505
Buell, L., Heise, U. K., & Thornber, K. (2011). Literature and environment. Annual Review of Environment and Resources, 36(1), 417–440. https://doi.org/10.1146/annurev-environ-111109-144855
Chalmers, B. J. (2013). Electric Motor Handbook (Ed). Elsevier. https://www.elsevier.com/books/electric-motor-handbook/chalmers/978-0-408-00707-8
Dharmawan, I. P., S Kumara, I. N., & Budiastra, I. N. (2021). Perkembangan Infrastruktur Pengisian Baterai Kendaraan Listrik Di Indonesia. 8(3), 90–101.
Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transportation Research Part C: Emerging Technologies, 38, 44–55. https://doi.org/https://doi.org/10.1016/j.trc.2013.11.001
Eka Maulana MT., M.Eng., Taufiq Yudi Sulistiyono., Ir. Nurussa’adah, MT, S. T. (2014). Komparasi Sistem Komunikasi Serial Multipoint Pada Robot Management Sampah Menggunakan I2C Dan SPI. Jurnal Mahasiswa Teknik Elektro Universitas Brawijaya, 2(3).
Falvo, M. C., Sbordone, D., Bayram, I. S., & Devetsikiotis, M. (2014). EV charging stations and modes: International standards. 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, 1134–1139. https://doi.org/10.1109/SPEEDAM.2014.6872107
Jar, B., Miler, A. J. V., & Watson, N. R. (2016). Rapid EV Chargers: Implementation of a Charger. EEA Conference & Exhibition.
Kim, D. H., & Choi, J. H. (2020). Analysis of the Transmission Performance of Control Pilot Signal Lines for Charging Communication in Electric Vehiclesa. International Journal of Automotive Technology, 21(2), 519–525. https://doi.org/10.1007/s12239-020-0049-0
Kim, J.-M., Lee, J., Eom, T.-H., Bae, K.-H., Shin, M.-H., & Won, C.-Y. (2018). Design and Control Method of 25kW High Efficient EV Fast Charger. 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 2603–2607. https://doi.org/10.23919/ICEMS.2018.8549491
Lewandowski, C., Gröning, S., Schmutzler, J., & Wietfeld, C. (2012). Interference analyses of Electric Vehicle charging using PLC on the Control Pilot. 2012 IEEE International Symposium on Power Line Communications and Its Applications, 350–355. https://doi.org/10.1109/ISPLC.2012.6201296
Machedon-Pisu, M., & Borza, P. N. (2020). Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study. In Sustainability (Vol. 12, Issue 1). https://doi.org/10.3390/su12010032
Matsuo, H., Lin, W., Kurokawa, F., Shigemizu, T., & Watanabe, N. (2004). Characteristics of the multiple-input DC-DC converter. IEEE Transactions on Industrial Electronics, 51(3), 625–631. https://doi.org/10.1109/TIE.2004.825362
Muthukumar, M., Rengarajan, N., Velliyangiri, B., Omprakas, M. A., Rohit, C. B., & Kartheek Raja, U. (2021). The development of fuel cell electric vehicles – A review. Materials Today: Proceedings, 45, 1181–1187. https://doi.org/https://doi.org/10.1016/j.matpr.2020.03.679
Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265–2300. https://doi.org/https://doi.org/10.1016/j.rser.2007.05.001
Open EVSE: About. (2022). https://www.openevse.com/about-us.html
OpenEVSE. (2021). In WIKIPEDIA. Wikimedia. https://en.wikipedia.org/wiki/OpenEVSE
Pareek, S., Sujil, A., Ratra, S., & Kumar, R. (2020). Electric Vehicle Charging Station Challenges and Opportunities: A Future Perspective. 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), 1–6. https://doi.org/10.1109/ICONC345789.2020.9117473
Pero, F. Del, Delogu, M., & Pierini, M. (2018). Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structural Integrity, 12, 521–537. https://doi.org/https://doi.org/10.1016/j.prostr.2018.11.066
Rajendran, G., Vaithilingam, C. A., Misron, N., Naidu, K., & Ahmed, M. R. (2021). A comprehensive review on system architecture and international standards for electric vehicle charging stations. Journal of Energy Storage, 42, 103099. https://doi.org/https://doi.org/10.1016/j.est.2021.103099
Schaumont, P. R. (2013). System on Chip BT - A Practical Introduction to Hardware/Software Codesign (P. R. Schaumont (Ed.); pp. 237–265). Springer US. https://doi.org/10.1007/978-1-4614-3737-6_8
Siedlecki, S. L. (2020). Understanding Descriptive Research Designs and Methods. Clinical Nurse Specialist, 34(1), 8–12. https://doi.org/10.1097/NUR.0000000000000493
Stephan, C. H., & Sullivan, J. (2008). Environmental and energy implications of plug-in hybrid-electric vehicles. Environmental Science and Technology, 42(4), 1185–1190. https://doi.org/10.1021/es062314d
Tarei, P. K., Chand, P., & Gupta, H. (2021). Barriers to the adoption of electric vehicles: Evidence from India. Journal of Cleaner Production, 291, 125847. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.125847
Tushar, W., Yuen, C., Huang, S., Smith, D. B., & Poor, H. V. (2016). Cost Minimization of Charging Stations With Photovoltaics: An Approach With EV Classification. IEEE Transactions on Intelligent Transportation Systems, 17(1), 156–169. https://doi.org/10.1109/TITS.2015.2462824
Zia, A. (2016). A comprehensive overview on the architecture of Hybrid Electric Vehicles (HEV). 2016 19th International Multi-Topic Conference (INMIC), 1–7. https://doi.org/10.1109/INMIC.2016.7840143
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Calvin Mamahit, Janne Ticoh, Nontje Sangi, Harrichoon Angmalisang
This work is licensed under a Creative Commons Attribution 4.0 International License.